Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2323383

ABSTRACT

In this paper a numerical methodology for close proximity exposure (<2m) is applied to the analysis of aerosol airborne dispersion and SARS-CoV-2 potential infection risk during short journeys in passenger cars. It consists of a three-dimensional transient Eulerian-Lagrangian numerical model coupled with a recently proposed SARS-CoV-2 emission approach, using the open-source software OpenFOAM. The numerical tool, validated by Particle Image Velocimetry (PIV), is applied to the simulation of aerosol droplets emitted by a contagious subject in a car cabin during a 30-minute journey and to the integrated risk assessment for SARS-CoV-2 for the other passengers. The effects of different geometrical and thermo-fluid-dynamic influence parameters are investigated, showing that both the position of the infected subject and the ventilation system design affect the amount of virus inhaled and the highest-risk position inside the passenger compartment. Calculated infection risk, for susceptible passengers in the car, can reach values up to 59%. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

2.
Building and Environment ; 235, 2023.
Article in English | Scopus | ID: covidwho-2255653

ABSTRACT

The airborne transmission in indoor environments represents the main pathway of respiratory pathogens, and most of the indoor environments do not have adequate ventilation to contain the risk of infection. This is particularly relevant for gathering spaces such as restaurants, schools, offices, etc. due to the long exposure times and high crowding levels. In this paper we investigated the effectiveness of a novel patented personal air cleaner in reducing the airborne transmission of respiratory pathogens both in close proximity (considering a typical face-to-face configuration at a conversational distance) and in shared indoor environments despite maintaining distancing (lecture room). The effectiveness of the portable protection device was investigated using complex transient 3D Computational Fluid Dynamics (CFD) numerical simulations. The mathematical model employed, validated through experimental measurements, is based on a Eulerian-Lagrangian approach, describing the air flow as the continuous phase and infectious respiratory particles as the discrete phase. The CFD analyses revealed that the air cleaner could strongly reduce the inhalation of respiratory pathogens in both the investigated scenarios. The air cleaner effectiveness in the case of a close proximity scenario, expressed as relative reduction of volume of infectious respiratory particles inhaled by the exposed subject, resulted >92%. In the case of use in a shared indoor environment, instead, during a 2-h lesson, the relative reduction of volume concentration of infectious particles in the breathing zone of the exposed subject was >99%. © 2023 Elsevier Ltd

3.
Geoscience Frontiers ; 13(6), 2022.
Article in English | Web of Science | ID: covidwho-2104986

ABSTRACT

Public transport environments are thought to play a key role in the spread of SARS-CoV-2 worldwide. Indeed, high crowding indexes (i.e. high numbers of people relative to the vehicle size), inadequate clean air supply, and frequent extended exposure durations make transport environments potential hotspots for transmission of respiratory infections. During the COVID-19 pandemic, generic mitigation measures (e.g. physical distancing) have been applied without also considering the airborne transmission route. This is due to the lack of quantified data about airborne contagion risk in transport environments.In this study, we apply a novel combination of close proximity and room-scale risk assessment approaches for people sharing public transport environments to predict their contagion risk due to SARS-CoV-2 respiratory infection. In particular, the individual infection risk of susceptible subjects and the transmissibility of SARS-CoV-2 (expressed through the reproduction number) are evaluated for two types of buses, differing in terms of exposure time and crowding index: urban and long-distance buses. Infection risk and reproduction number are calculated for different scenarios as a function of the ventilation rates (both measured and estimated according to standards), crowding indexes, and travel times. The results show that for urban buses, the close proximity contribution significantly affects the maximum occupancy to maintain a reproductive number of <1. In particular, full occupancy of the bus would be permitted only for an infected subject breathing, whereas for an infected subject speaking, masking would be required. For long-distance buses, full occupancy of the bus can be maintained only if specific mitigation solutions are simultaneously applied. For example, for an infected person speaking for 1 h, appropriate filtration of the recirculated air and simultaneous use of FFP2 masks would permit full occupancy of the bus for a period of almost 8 h. Otherwise, a high percentage of immunized persons (>80%) would be needed.(c) 2022 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

4.
J Hazard Mater ; 428: 128279, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1620827

ABSTRACT

The airborne transmission of SARS-CoV-2 remains surprisingly controversial; indeed, health and regulatory authorities still require direct proof of this mode of transmission. To close this gap, we measured the viral load of SARS-CoV-2 of an infected subject in a hospital room (through an oral and nasopharyngeal swab), as well as the airborne SARS-CoV-2 concentration in the room resulting from the person breathing and speaking. Moreover, we simulated the same scenarios to estimate the concentration of RNA copies in the air through a novel theoretical approach and conducted a comparative analysis between experimental and theoretical results. Results showed that for an infected subject's viral load ranging between 2.4 × 106 and 5.5 × 106 RNA copies mL-1, the corresponding airborne SARS-CoV-2 concentration was below the minimum detection threshold when the person was breathing, and 16.1 (expanded uncertainty of 32.8) RNA copies m-3 when speaking. The application of the predictive approach provided concentrations metrologically compatible with the available experimental data (i.e. for speaking activity). Thus, the study presented significant evidence to close the gap in understanding airborne transmission, given that the airborne SARS-CoV-2 concentration was shown to be directly related to the SARS-CoV-2 emitted. Moreover, the theoretical analysis was shown to be able to quantitatively link the airborne concentration to the emission.


Subject(s)
Air Microbiology , COVID-19 , SARS-CoV-2 , Aerosols , COVID-19/virology , Humans , Viral Load
5.
BMC Infect Dis ; 21(1): 1193, 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1538062

ABSTRACT

BACKGROUND: Effective vaccines are now available for SARS-CoV-2 in the 2nd year of the COVID-19 pandemic, but there remains significant uncertainty surrounding the necessary vaccination rate to safely lift occupancy controls in public buildings and return to pre-pandemic norms. The aim of this paper is to estimate setting-specific vaccination thresholds for SARS-CoV-2 to prevent sustained community transmission using classical principles of airborne contagion modeling. We calculated the airborne infection risk in three settings, a classroom, prison cell block, and restaurant, at typical ventilation rates, and then the expected number of infections resulting from this risk at varying percentages of occupant immunity. RESULTS: We estimate the setting-specific immunity threshold for control of wild-type SARS-CoV-2 to range from a low of 40% for a mechanically ventilation classroom to a high of 85% for a naturally ventilated restaurant. CONCLUSIONS: If vaccination rates are limited to a theoretical minimum of approximately two-thirds of the population, enhanced ventilation above minimum standards for acceptable air quality is needed to reduce the frequency and severity of SARS-CoV-2 superspreading events in high-risk indoor environments.


Subject(s)
Air Pollution, Indoor , COVID-19 , Humans , Pandemics , SARS-CoV-2 , Vaccination , Ventilation
6.
Sci Total Environ ; 794: 148749, 2021 Nov 10.
Article in English | MEDLINE | ID: covidwho-1294224

ABSTRACT

Although the interpersonal distance represents an important parameter affecting the risk of infection due to respiratory viruses, the mechanism of exposure to exhaled droplets remains insufficiently characterized. In this study, an integrated risk assessment is presented for SARS-CoV-2 close proximity exposure between a speaking infectious subject and a susceptible subject. It is based on a three-dimensional transient numerical model for the description of exhaled droplet spread once emitted by a speaking person, coupled with a recently proposed SARS-CoV-2 emission approach. Particle image velocimetry measurements were conducted to validate the numerical model. The contribution of the large droplets to the risk is barely noticeable only for distances well below 0.6 m, whereas it drops to zero for greater distances where it depends only on airborne droplets. In particular, for short exposures (10 s) a minimum safety distance of 0.75 m should be maintained to lower the risk below 0.1%; for exposures of 1 and 15 min this distance increases to about 1.1 and 1.5 m, respectively. Based on the interpersonal distances across countries reported as a function of interacting individuals, cultural differences, and environmental and sociopsychological factors, the approach presented here revealed that, in addition to intimate and personal distances, particular attention must be paid to exposures longer than 1 min within social distances (of about 1 m).


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , COVID-19/transmission , Exhalation , Humans , Risk Assessment
7.
Build Environ ; 202: 108042, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1263231

ABSTRACT

Reducing the transmission of SARS-CoV-2 through indoor air is the key challenge of the COVID-19 pandemic. Crowded indoor environments, such as schools, represent possible hotspots for virus transmission since the basic non-pharmaceutical mitigation measures applied so far (e.g. social distancing) do not eliminate the airborne transmission mode. There is widespread consensus that improved ventilation is needed to minimize the transmission potential of airborne viruses in schools, whether through mechanical systems or ad-hoc manual airing procedures in naturally ventilated buildings. However, there remains significant uncertainty surrounding exactly what ventilation rates are required, and how to best achieve these targets with limited time and resources. This paper uses a mass balance approach to quantify the ability of both mechanical ventilation and ad-hoc airing procedures to mitigate airborne transmission risk in the classroom environment. For naturally-ventilated classrooms, we propose a novel feedback control strategy using CO2 concentrations to continuously monitor and adjust the airing procedure. Our case studies show how such procedures can be applied in the real world to support the reopening of schools during the pandemic. Our results also show the inadequacy of relying on absolute CO2 concentration thresholds as the sole indicator of airborne transmission risk.

9.
Environ Int ; 145: 106112, 2020 12.
Article in English | MEDLINE | ID: covidwho-746045

ABSTRACT

Airborne transmission is a recognized pathway of contagion; however, it is rarely quantitatively evaluated. The numerous outbreaks that have occurred during the SARS-CoV-2 pandemic are putting a demand on researchers to develop approaches capable of both predicting contagion in closed environments (predictive assessment) and analyzing previous infections (retrospective assessment). This study presents a novel approach for quantitative assessment of the individual infection risk of susceptible subjects exposed in indoor microenvironments in the presence of an asymptomatic infected SARS-CoV-2 subject. The application of a Monte Carlo method allowed the risk for an exposed healthy subject to be evaluated or, starting from an acceptable risk, the maximum exposure time. We applied the proposed approach to four distinct scenarios for a prospective assessment, highlighting that, in order to guarantee an acceptable risk of 10-3 for exposed subjects in naturally ventilated indoor environments, the exposure time could be well below one hour. Such maximum exposure time clearly depends on the viral load emission of the infected subject and on the exposure conditions; thus, longer exposure times were estimated for mechanically ventilated indoor environments and lower viral load emissions. The proposed approach was used for retrospective assessment of documented outbreaks in a restaurant in Guangzhou (China) and at a choir rehearsal in Mount Vernon (USA), showing that, in both cases, the high attack rate values can be justified only assuming the airborne transmission as the main route of contagion. Moreover, we show that such outbreaks are not caused by the rare presence of a superspreader, but can be likely explained by the co-existence of conditions, including emission and exposure parameters, leading to a highly probable event, which can be defined as a "superspreading event".


Subject(s)
Coronavirus Infections/transmission , Coronavirus , Pneumonia, Viral/transmission , Risk Assessment/methods , Aerosols , Air Pollution, Indoor , Betacoronavirus , COVID-19 , China , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Prospective Studies , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL